>

Linux 内核设备驱动程序的IO寄存器访问 (下)


来源: 博客园

Linux内核设备驱动程序通过`devm_regmap_init_mmio()`等函数获得`struc

Linux 内核设备驱动程序通过 devm_regmap_init_mmio()等函数获得 struct regmap结构对象,该对象包含可用于访问设备寄存器的全部信息,包括定义访问操作如何执行的 bus,定义了各个设备寄存器的读写属性的 config,以及加速设备寄存器访问的 cache。

Linux 内核设备驱动程序可以通过 regmap_write()regmap_read()regmap_update_bits()等函数读写设备寄存器,通过 regcache_sync()regcache_cache_only()regcache_cache_bypass()regcache_mark_dirty()等函数操作缓存。


(资料图片仅供参考)

基于 I2C 的 regmap

通过 I2C 访问的设备寄存器,可以使用 regmap 机制来访问。如在 ALC 5651 audio codec 内核设备驱动程序里,在 probe操作中创建 regmap 对象 (位于 sound/soc/codecs/rt5651.c):

static const struct regmap_config rt5651_regmap = {.reg_bits = 8,.val_bits = 16,.max_register = RT5651_DEVICE_ID + 1 + (ARRAY_SIZE(rt5651_ranges) *       RT5651_PR_SPACING),.volatile_reg = rt5651_volatile_register,.readable_reg = rt5651_readable_register,.cache_type = REGCACHE_RBTREE,.reg_defaults = rt5651_reg,.num_reg_defaults = ARRAY_SIZE(rt5651_reg),.ranges = rt5651_ranges,.num_ranges = ARRAY_SIZE(rt5651_ranges),.use_single_read = true,.use_single_write = true,}; . . . . . .static int rt5651_i2c_probe(struct i2c_client *i2c,    const struct i2c_device_id *id){struct rt5651_priv *rt5651;int ret;int err;rt5651 = devm_kzalloc(&i2c->dev, sizeof(*rt5651),GFP_KERNEL);if (NULL == rt5651)return -ENOMEM;i2c_set_clientdata(i2c, rt5651);rt5651->regmap = devm_regmap_init_i2c(i2c, &rt5651_regmap);if (IS_ERR(rt5651->regmap)) {ret = PTR_ERR(rt5651->regmap);dev_err(&i2c->dev, "Failed to allocate register map: %d\n",ret);return ret;} . . . . . .

之后对设备寄存器的访问方法,同 mmio 的一样。这里创建 regmap 对象的方法为调用 devm_regmap_init_i2c(),这是一个宏,其定义 (位于 include/linux/regmap.h) 如下:

struct regmap *__devm_regmap_init_i2c(struct i2c_client *i2c,         const struct regmap_config *config,         struct lock_class_key *lock_key,         const char *lock_name);. . . . . ./*** devm_regmap_init_i2c() - Initialise managed register map** @i2c: Device that will be interacted with* @config: Configuration for register map** The return value will be an ERR_PTR() on error or a valid pointer* to a struct regmap.  The regmap will be automatically freed by the* device management code.*/#define devm_regmap_init_i2c(i2c, config)\   __regmap_lockdep_wrapper

这个宏调用了 __devm_regmap_init_i2c()函数,该函数定义 (位于 drivers/base/regmap/regmap-i2c.c) 如下:

static const struct regmap_bus regmap_smbus_byte = {.reg_write = regmap_smbus_byte_reg_write,.reg_read = regmap_smbus_byte_reg_read,}; . . . . . .static const struct regmap_bus regmap_smbus_word = {.reg_write = regmap_smbus_word_reg_write,.reg_read = regmap_smbus_word_reg_read,}; . . . . . .static const struct regmap_bus regmap_smbus_word_swapped = {.reg_write = regmap_smbus_word_write_swapped,.reg_read = regmap_smbus_word_read_swapped,}; . . . . . .static const struct regmap_bus regmap_i2c = {.write = regmap_i2c_write,.gather_write = regmap_i2c_gather_write,.read = regmap_i2c_read,.reg_format_endian_default = REGMAP_ENDIAN_BIG,.val_format_endian_default = REGMAP_ENDIAN_BIG,}; . . . . . .static const struct regmap_bus regmap_i2c_smbus_i2c_block = {.write = regmap_i2c_smbus_i2c_write,.read = regmap_i2c_smbus_i2c_read,.max_raw_read = I2C_SMBUS_BLOCK_MAX,.max_raw_write = I2C_SMBUS_BLOCK_MAX,}; . . . . . .static const struct regmap_bus regmap_i2c_smbus_i2c_block_reg16 = {.write = regmap_i2c_smbus_i2c_write_reg16,.read = regmap_i2c_smbus_i2c_read_reg16,.max_raw_read = I2C_SMBUS_BLOCK_MAX,.max_raw_write = I2C_SMBUS_BLOCK_MAX,};static const struct regmap_bus *regmap_get_i2c_bus(struct i2c_client *i2c,const struct regmap_config *config){const struct i2c_adapter_quirks *quirks;const struct regmap_bus *bus = NULL;struct regmap_bus *ret_bus;u16 max_read = 0, max_write = 0;if (i2c_check_functionality(i2c->adapter, I2C_FUNC_I2C))bus = ®map_i2c;else if (config->val_bits == 8 && config->reg_bits == 8 && i2c_check_functionality(i2c->adapter, I2C_FUNC_SMBUS_I2C_BLOCK))bus = ®map_i2c_smbus_i2c_block;else if (config->val_bits == 8 && config->reg_bits == 16 &&i2c_check_functionality(i2c->adapter,I2C_FUNC_SMBUS_I2C_BLOCK))bus = ®map_i2c_smbus_i2c_block_reg16;else if (config->val_bits == 16 && config->reg_bits == 8 && i2c_check_functionality(i2c->adapter, I2C_FUNC_SMBUS_WORD_DATA))switch (regmap_get_val_endian(&i2c->dev, NULL, config)) {case REGMAP_ENDIAN_LITTLE:bus = ®map_smbus_word;break;case REGMAP_ENDIAN_BIG:bus = ®map_smbus_word_swapped;break;default:/* everything else is not supported */break;}else if (config->val_bits == 8 && config->reg_bits == 8 && i2c_check_functionality(i2c->adapter, I2C_FUNC_SMBUS_BYTE_DATA))bus = ®map_smbus_byte;if (!bus)return ERR_PTR(-ENOTSUPP);quirks = i2c->adapter->quirks;if (quirks) {if (quirks->max_read_len &&    (bus->max_raw_read == 0 || bus->max_raw_read > quirks->max_read_len))max_read = quirks->max_read_len;if (quirks->max_write_len &&    (bus->max_raw_write == 0 || bus->max_raw_write > quirks->max_write_len))max_write = quirks->max_write_len;if (max_read || max_write) {ret_bus = kmemdup(bus, sizeof(*bus), GFP_KERNEL);if (!ret_bus)return ERR_PTR(-ENOMEM);ret_bus->free_on_exit = true;ret_bus->max_raw_read = max_read;ret_bus->max_raw_write = max_write;bus = ret_bus;}}return bus;} . . . . . .struct regmap *__devm_regmap_init_i2c(struct i2c_client *i2c,      const struct regmap_config *config,      struct lock_class_key *lock_key,      const char *lock_name){const struct regmap_bus *bus = regmap_get_i2c_bus(i2c, config);if (IS_ERR(bus))return ERR_CAST(bus);return __devm_regmap_init(&i2c->dev, bus, &i2c->dev, config,  lock_key, lock_name);}EXPORT_SYMBOL_GPL(__devm_regmap_init_i2c);

__devm_regmap_init_i2c()函数首先根据寄存器映射的配置,如寄存器地址的位数,寄存器值的位数,I2C 总线的功能特性,大尾端还是小尾端等,选择设备寄存器的访问操作,即 struct regmap_bus,然后如同 __devm_regmap_init_mmio_clk()函数一样,通过 __devm_regmap_init()函数创建并初始化 regmap 对象。

这里通过 i2c_check_functionality()函数判断 I2C 总线的功能特性,这个函数定义 (位于 include/linux/i2c.h) 如下:

/* Return the functionality mask */static inline u32 i2c_get_functionality(struct i2c_adapter *adap){return adap->algo->functionality(adap);}/* Return 1 if adapter supports everything we need, 0 if not. */static inline int i2c_check_functionality(struct i2c_adapter *adap, u32 func){return (func & i2c_get_functionality(adap)) == func;}

即通过 I2C 总线适配器驱动程序实现的 functionality操作来判断。ALC 5651 Linux 内核驱动程序的寄存器映射配置,寄存器地址为 8 位,值为 16 位,对于标准的 I2C 总线,对应的 I2C IO 操作如下:

static int regmap_i2c_write(void *context, const void *data, size_t count){struct device *dev = context;struct i2c_client *i2c = to_i2c_client(dev);int ret;ret = i2c_master_send(i2c, data, count);if (ret == count)return 0;else if (ret < 0)return ret;elsereturn -EIO;}static int regmap_i2c_gather_write(void *context,   const void *reg, size_t reg_size,   const void *val, size_t val_size){struct device *dev = context;struct i2c_client *i2c = to_i2c_client(dev);struct i2c_msg xfer[2];int ret;/* If the I2C controller can"t do a gather tell the core, it * will substitute in a linear write for us. */if (!i2c_check_functionality(i2c->adapter, I2C_FUNC_NOSTART))return -ENOTSUPP;xfer[0].addr = i2c->addr;xfer[0].flags = 0;xfer[0].len = reg_size;xfer[0].buf = (void *)reg;xfer[1].addr = i2c->addr;xfer[1].flags = I2C_M_NOSTART;xfer[1].len = val_size;xfer[1].buf = (void *)val;ret = i2c_transfer(i2c->adapter, xfer, 2);if (ret == 2)return 0;if (ret < 0)return ret;elsereturn -EIO;}static int regmap_i2c_read(void *context,   const void *reg, size_t reg_size,   void *val, size_t val_size){struct device *dev = context;struct i2c_client *i2c = to_i2c_client(dev);struct i2c_msg xfer[2];int ret;xfer[0].addr = i2c->addr;xfer[0].flags = 0;xfer[0].len = reg_size;xfer[0].buf = (void *)reg;xfer[1].addr = i2c->addr;xfer[1].flags = I2C_M_RD;xfer[1].len = val_size;xfer[1].buf = val;ret = i2c_transfer(i2c->adapter, xfer, 2);if (ret == 2)return 0;else if (ret < 0)return ret;elsereturn -EIO;}static const struct regmap_bus regmap_i2c = {.write = regmap_i2c_write,.gather_write = regmap_i2c_gather_write,.read = regmap_i2c_read,.reg_format_endian_default = REGMAP_ENDIAN_BIG,.val_format_endian_default = REGMAP_ENDIAN_BIG,};

这里构造消息给 I2C 总线驱动程序,调用 Linux 内核 I2C 子系统提供的 i2c_master_send()i2c_transfer()等操作,完成对设备寄存器的读写。Linux 内核 I2C 子系统及 I2C 总线驱动程序的更多细节这里不多赘述。

写设备寄存器

Linux 内核设备驱动程序通过 regmap_write()等函数写设备寄存器,相关的这些函数原型 (位于 include/linux/regmap.h) 如下:

int regmap_write(struct regmap *map, unsigned int reg, unsigned int val);int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val);int regmap_raw_write(struct regmap *map, unsigned int reg,     const void *val, size_t val_len);int regmap_noinc_write(struct regmap *map, unsigned int reg,     const void *val, size_t val_len);int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,size_t val_count);int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,int num_regs);int regmap_multi_reg_write_bypassed(struct regmap *map,    const struct reg_sequence *regs,    int num_regs);int regmap_raw_write_async(struct regmap *map, unsigned int reg,   const void *val, size_t val_len);

regmap_write()regmap_write_async()函数分别同步和异步地写一个设备寄存器,这两个函数定义 (位于 drivers/base/regmap/regmap.c) 如下:

bool regmap_reg_in_ranges(unsigned int reg,  const struct regmap_range *ranges,  unsigned int nranges){const struct regmap_range *r;int i;for (i = 0, r = ranges; i < nranges; i++, r++)if (regmap_reg_in_range(reg, r))return true;return false;}EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);bool regmap_check_range_table(struct regmap *map, unsigned int reg,      const struct regmap_access_table *table){/* Check "no ranges" first */if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))return false;/* In case zero "yes ranges" are supplied, any reg is OK */if (!table->n_yes_ranges)return true;return regmap_reg_in_ranges(reg, table->yes_ranges,    table->n_yes_ranges);}EXPORT_SYMBOL_GPL(regmap_check_range_table);bool regmap_writeable(struct regmap *map, unsigned int reg){if (map->max_register && reg > map->max_register)return false;if (map->writeable_reg)return map->writeable_reg(map->dev, reg);if (map->wr_table)return regmap_check_range_table(map, reg, map->wr_table);return true;} . . . . . .static inline void *_regmap_map_get_context(struct regmap *map){return (map->bus) ? map : map->bus_context;}int _regmap_write(struct regmap *map, unsigned int reg,  unsigned int val){int ret;void *context = _regmap_map_get_context(map);if (!regmap_writeable(map, reg))return -EIO;if (!map->cache_bypass && !map->defer_caching) {ret = regcache_write(map, reg, val);if (ret != 0)return ret;if (map->cache_only) {map->cache_dirty = true;return 0;}}if (regmap_should_log(map))dev_info(map->dev, "%x <= %x\n", reg, val);trace_regmap_reg_write(map, reg, val);return map->reg_write(context, reg, val);}/** * regmap_write() - Write a value to a single register * * @map: Register map to write to * @reg: Register to write to * @val: Value to be written * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */int regmap_write(struct regmap *map, unsigned int reg, unsigned int val){int ret;if (!IS_ALIGNED(reg, map->reg_stride))return -EINVAL;map->lock(map->lock_arg);ret = _regmap_write(map, reg, val);map->unlock(map->lock_arg);return ret;}EXPORT_SYMBOL_GPL(regmap_write);/** * regmap_write_async() - Write a value to a single register asynchronously * * @map: Register map to write to * @reg: Register to write to * @val: Value to be written * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val){int ret;if (!IS_ALIGNED(reg, map->reg_stride))return -EINVAL;map->lock(map->lock_arg);map->async = true;ret = _regmap_write(map, reg, val);map->async = false;map->unlock(map->lock_arg);return ret;}EXPORT_SYMBOL_GPL(regmap_write_async);

像众多 regmap 机制提供的设备寄存器访问操作函数一样,这两个函数,在开始任何操作前先加了锁,并在结束操作后解锁,regmap 机制提供了对设备寄存器的互斥访问

regmap_write_async()函数在加锁后,将 map->async赋值为 true,并在解锁前将其赋值为 false,从 _regmap_write()函数的实现来看,这里的异步写疑似没有工作。

regmap_write()regmap_write_async()函数都通过 _regmap_write()函数完成对设备寄存器的写操作。

_regmap_write()函数的执行过程是简单的三步:

检查要写入的寄存器是否可写。这里的检查按照设备寄存器的读写属性配置进行。首先,检查寄存器是否超过了配置的寄存器,若超过了,则显然不可写;其次,当 writeable_reg回调函数配置时,由该回调函数判断;然后,当 wr_table可写寄存器表配置时,根据该表做判断;否则,认为寄存器可写。对于寄存器是否可写的判断,如果同时配置了 writeable_reg回调函数和 wr_table可写寄存器表,则前者的优先级高于后者,后者将被忽略;如果两者都没有配置,则认为寄存器可写。

使用了 cache,而没开延迟 cache 时,将要写入寄存器的值先写入 cached。如果写入失败,则直接返回,否则继续执行。如果设置了 map->cache_only,则将 map->cache_dirty置为 true并返回,否则继续执行。map->cache_only标记表示不希望真正地写设备寄存器。

调用 struct regmapreg_write操作向设备寄存器写入值。

这里的写操作基本上是一个无条件的写,即在写入设备寄存器之前,不会检查缓存中是否已经存在了相同值。

regcache_write()函数定义 (位于 drivers/base/regmap/regcache.c) 如下:

int regcache_write(struct regmap *map,   unsigned int reg, unsigned int value){if (map->cache_type == REGCACHE_NONE)return 0;BUG_ON(!map->cache_ops);if (!regmap_volatile(map, reg))return map->cache_ops->write(map, reg, value);return 0;}

regcache_write()函数,首先,检查是否开启了 cache,如果没有则直接返回,否则继续执行;其次,检查要写入的寄存器是否为 volatile 的,如果不是,则通过 cache 实现的 write回调写入 cache,否则返回。

regmap_volatile()函数用以检查寄存器是否为 volatile 的,这个函数定义 (位于 drivers/base/regmap/regmap.c) 如下:

bool regmap_readable(struct regmap *map, unsigned int reg){if (!map->reg_read)return false;if (map->max_register && reg > map->max_register)return false;if (map->format.format_write)return false;if (map->readable_reg)return map->readable_reg(map->dev, reg);if (map->rd_table)return regmap_check_range_table(map, reg, map->rd_table);return true;}bool regmap_volatile(struct regmap *map, unsigned int reg){if (!map->format.format_write && !regmap_readable(map, reg))return false;if (map->volatile_reg)return map->volatile_reg(map->dev, reg);if (map->volatile_table)return regmap_check_range_table(map, reg, map->volatile_table);if (map->cache_ops)return false;elsereturn true;}

对寄存器是否为 volatile 的检查,暗含着对它是否可读的检查。如果寄存器不是 volatile 的,会被认为是可缓存的。regmap_volatile()函数的检查过程如下:

没有定义 format_write操作,同时寄存器不可读,则认为寄存器不是 volatile 的。这里有个坑。如果寄存器是只写的,比如 W1C 写 1 清的寄存器等 (对于硬件设备,这样的寄存器比较常见),在这里会被判定为非 volatile 的,如果开了缓存即是可缓存的。在 regmap_update_bits()操作中会出问题

和对寄存器的 writable 判断类似,先检查配置的 volatile_reg回调操作,再检查 volatile_table表。

如果既没有配置 volatile_reg回调操作,也没有配置 volatile_table表,则根据缓存配置判断。如果开了缓存,则认为所有寄存器都是非 volatile 的,即都可以缓存,否则都是 volatile 的。

regmap_readable()函数中对于寄存器是否可读的判断,与对寄存器是否可写的判断类似。但多了对 map->reg_read寄存器读操作的检查,及格式化写的检查。

这里不再详细分析 regmap_raw_write()regmap_noinc_write()regmap_bulk_write()等更复杂的设备寄存器写操作。

读设备寄存器

Linux 内核设备驱动程序通过 regmap_read()等函数读设备寄存器,相关的这些函数原型 (位于 include/linux/regmap.h) 如下:

int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val);int regmap_raw_read(struct regmap *map, unsigned int reg,    void *val, size_t val_len);int regmap_noinc_read(struct regmap *map, unsigned int reg,      void *val, size_t val_len);int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,     size_t val_count);

regmap_read()函数同步地读一个设备寄存器,这个函数定义 (位于 drivers/base/regmap/regmap.c) 如下:

static int _regmap_read(struct regmap *map, unsigned int reg,unsigned int *val){int ret;void *context = _regmap_map_get_context(map);if (!map->cache_bypass) {ret = regcache_read(map, reg, val);if (ret == 0)return 0;}if (map->cache_only)return -EBUSY;if (!regmap_readable(map, reg))return -EIO;ret = map->reg_read(context, reg, val);if (ret == 0) {if (regmap_should_log(map))dev_info(map->dev, "%x => %x\n", reg, *val);trace_regmap_reg_read(map, reg, *val);if (!map->cache_bypass)regcache_write(map, reg, *val);}return ret;}/** * regmap_read() - Read a value from a single register * * @map: Register map to read from * @reg: Register to be read from * @val: Pointer to store read value * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val){int ret;if (!IS_ALIGNED(reg, map->reg_stride))return -EINVAL;map->lock(map->lock_arg);ret = _regmap_read(map, reg, val);map->unlock(map->lock_arg);return ret;}EXPORT_SYMBOL_GPL(regmap_read);

regmap_write()函数类似, regmap_read()函数,首先,对 regmap 加锁;然后,调用 _regmap_read()函数执行读操作;最后,解锁并返回。_regmap_read()函数的执行过程是清晰的几个步骤:

如果开启了缓存,则先从缓存读,如果成功则返回,否则继续执行。

如果设置了 map->cache_only,则报错返回。设备驱动程序挂起时,可以设置 map->cache_only,以防止意外地对设备寄存器读写。

判断寄存器是否可读,如果不可读,则报错返回,否则继续执行。对于只写的设备寄存器,如果开启了缓存,在这个函数中将读到上次写入的值。在逻辑上,这样的返回值不太合适。这个函数更好的实现方法,似乎是将寄存器是否可读的判断,放在从缓存读寄存器前面。

读取设备寄存器。

读取设备寄存器成功,且开启了缓存,则将读取的值写入缓存。

从缓存中读取设备寄存器的值的函数 regcache_read()定义 (位于 drivers/base/regmap/regcache.c) 如下:

int regcache_read(struct regmap *map,  unsigned int reg, unsigned int *value){int ret;if (map->cache_type == REGCACHE_NONE)return -ENOSYS;BUG_ON(!map->cache_ops);if (!regmap_volatile(map, reg)) {ret = map->cache_ops->read(map, reg, value);if (ret == 0)trace_regmap_reg_read_cache(map, reg, *value);return ret;}return -EINVAL;}

缓存操作针对开启了缓存的 regmap 的非 volatile 的寄存器。在 regcache_read()函数中,它从缓存实现中读取寄存器的值。

这里不再详细分析 regmap_raw_read()regmap_noinc_read()regmap_bulk_read()等更复杂的设备寄存器读操作。

设备寄存器位更新

Linux 内核设备驱动程序通过 regmap_update_bits()等函数更新设备寄存器的特定位,相关的这些函数原型 (位于 include/linux/regmap.h) 如下:

int regmap_update_bits_base(struct regmap *map, unsigned int reg,    unsigned int mask, unsigned int val,    bool *change, bool async, bool force);static inline int regmap_update_bits(struct regmap *map, unsigned int reg,     unsigned int mask, unsigned int val){return regmap_update_bits_base(map, reg, mask, val, NULL, false, false);}static inline int regmap_update_bits_async(struct regmap *map, unsigned int reg,   unsigned int mask, unsigned int val){return regmap_update_bits_base(map, reg, mask, val, NULL, true, false);}static inline int regmap_update_bits_check(struct regmap *map, unsigned int reg,   unsigned int mask, unsigned int val,   bool *change){return regmap_update_bits_base(map, reg, mask, val,       change, false, false);}static inline intregmap_update_bits_check_async(struct regmap *map, unsigned int reg,       unsigned int mask, unsigned int val,       bool *change){return regmap_update_bits_base(map, reg, mask, val,       change, true, false);}static inline int regmap_write_bits(struct regmap *map, unsigned int reg,    unsigned int mask, unsigned int val){return regmap_update_bits_base(map, reg, mask, val, NULL, false, true);}

regmap_update_bits()等函数传入不同的参数调用 regmap_update_bits_base()函数,后者定义 (位于 drivers/base/regmap/regmap.c) 如下:

static int _regmap_update_bits(struct regmap *map, unsigned int reg,       unsigned int mask, unsigned int val,       bool *change, bool force_write){int ret;unsigned int tmp, orig;if (change)*change = false;if (regmap_volatile(map, reg) && map->reg_update_bits) {ret = map->reg_update_bits(map->bus_context, reg, mask, val);if (ret == 0 && change)*change = true;} else {ret = _regmap_read(map, reg, &orig);if (ret != 0)return ret;tmp = orig & ~mask;tmp |= val & mask;if (force_write || (tmp != orig)) {ret = _regmap_write(map, reg, tmp);if (ret == 0 && change)*change = true;}}return ret;}/** * regmap_update_bits_base() - Perform a read/modify/write cycle on a register * * @map: Register map to update * @reg: Register to update * @mask: Bitmask to change * @val: New value for bitmask * @change: Boolean indicating if a write was done * @async: Boolean indicating asynchronously * @force: Boolean indicating use force update * * Perform a read/modify/write cycle on a register map with change, async, force * options. * * If async is true: * * With most buses the read must be done synchronously so this is most useful * for devices with a cache which do not need to interact with the hardware to * determine the current register value. * * Returns zero for success, a negative number on error. */int regmap_update_bits_base(struct regmap *map, unsigned int reg,    unsigned int mask, unsigned int val,    bool *change, bool async, bool force){int ret;map->lock(map->lock_arg);map->async = async;ret = _regmap_update_bits(map, reg, mask, val, change, force);map->async = false;map->unlock(map->lock_arg);return ret;}EXPORT_SYMBOL_GPL(regmap_update_bits_base);

regmap_write()regmap_read()函数类似,regmap_update_bits_base()函数,首先,对 regmap 加锁;然后,设置 map->async标志,调用 _regmap_update_bits()函数执行寄存器位更新操作;最后,重置 map->async标志,解锁并返回。_regmap_update_bits()函数的执行分成几种情况来处理:

寄存器为 volatile 的,同时配置了 reg_update_bits回调函数,则执行 reg_update_bits回调函数并返回结果。寄存器为 volatile 的,所以可以忽略对 cached 的操作。只写寄存器会被判定为非 volatile 的,因而它们不会由 reg_update_bits回调函数处理。

其它情况。先读取寄存器。特别需要关注的是对只写寄存器的处理。第一次读取只写寄存器时,会读取失败并返回错误。如果之前对只写寄存器有过写入操作,且开了 cache,则会读取之前写入的值。随后,如果要求强制写,或要写入的位的值与读取的值不同,则将值写入寄存器。如果开了 cache,写操作会更新 cache。

考虑只写寄存器通过 regmap_update_bits_base()函数来更新,则要么更新失败,要么很可能发现要更新的值和缓存中的值一致,而不会实际去更新。对只写寄存器的任何更新,regmap_write()regmap_write_bits()函数是更好的选择。

要使得对 regmap 各函数调用的行为符合预期,还是需要对这些函数的行为实现有所了解,并适当的配置驱动程序中各个寄存器的读写属性。

整体看下来,regmap 机制提供的能力有这样一些:

提供的设备寄存器访问操作函数可以执行对设备寄存器的互斥访问。提高效率的 cache,其中包含多个 cache 策略可选。统一的方便的 IO 访问操作函数访问 mmio,i2c 等不同总线的设备 IO 寄存器。通过 debugfs 调试相关设备 IO 寄存器的能力。良好的扩展能力。如未来要通过 regmap 机制支持一种新的访问设备 IO 寄存器的总线,则仅需实现 struct regmap_bus即可。

Done.

[责任编辑:]

网罗天下

最近更新